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Abstract: The successes of magnetic resonance imaging and modern optical imaging of human
brain function have stimulated the development of complementary modalities that offer molecular
specificity, fine spatiotemporal resolution, and sufficient penetration simultaneously. By virtue of
its rich optical contrast, acoustic resolution, and imaging depth far beyond the optical transport
mean free path (∼1 mm in biological tissues), photoacoustic computed tomography (PACT) offers
a promising complementary modality. In this article, PACT for functional human brain imaging
is reviewed in its hardware, reconstruction algorithms, in vivo demonstration, and potential
roadmap.
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1. Introduction

With approximately 100 billion neurons and 100 trillion connections, the brain remains one of
the greatest mysteries and challenges in science and medicine [1,2]. Despite the tremendous
advances in neuroscience, the underlying causes of many neurological and psychiatric disorders,
such as Parkinson’s disease, Alzheimer’s disease, autism, and schizophrenia, remain largely
unknown due to the limited information extractable from the brain and the limited knowledge
to interpret the extracted information [2–4]. To catalyze neuroscience discovery, one primary
goal of the community is to develop imaging tools that provide rich functional contrast, fine
spatiotemporal resolution, and sufficient penetration.

Several neuroimaging technologies have been developed. Blood-oxygen-level dependent
(BOLD) functional magnetic resonance imaging (fMRI) at high or ultrahigh fields has made
tremendous improvements in spatiotemporal resolution, allowing brain function to be investigated
at the level of cortical layers and columns [5–8]. However, the BOLD signal shows a nonlinear
relationship with the deoxyhemoglobin (HbR) concentration and suffers substantial tissue
background [9,10]. Moreover, the MRI system’s bulkiness, high cost, and requirement of
confining the subject in a noisy and magnetic enclosure limit use for certain subjects and activities
[11]. Alternatively, positron emission tomography (PET) can image neurometabolism but requires
radioactive tracers and lacks fine spatiotemporal resolution [12]. Diffuse optical tomography
(also termed functional near-infrared spectroscopy (fNIRS)) is advantageous in molecular
specificity, temporal resolution, cost, and portability but suffers from low spatial resolution
due to light diffusion [13,14]. Electroencephalography (EEG) and magnetoencephalography
(MEG) can detect electrical activities of neurons at a high speed but with poor spatial resolution
[15]. Functional ultrasound (fUS) has been demonstrated as a valuable tool for monitoring
newborns’ brain activities through the fontanelles, to reveal adult brain micro-vasculature and
hemodynamics through the temporal bone by the use of microbubbles, and to monitor brain
activities during brain surgery [16–20]. Nevertheless, fUS lacks molecular specificity, and
the round-trip acoustic attenuation and aberration induced by the skull remain challenges for
label-free imaging. Generally, fUS is less sensitive to blood vessels running perpendicularly
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to the acoustic axis than those running in parallel with the acoustic axis. Generally, fUS uses
an ultrasound probe in direct contact with the head, and thus it may be difficult to image blood
vessels running along the cortical surface in a large field of view (FOV). Among the above
neuroimaging modalities, there is a gap between those with fine spatial resolution represented by
high/ultrahigh-filed fMRI and those with molecular specificity represented by fNIRS. Bridging
this gap provides a unique opportunity for photoacoustic (PA) computed tomography (PACT).

PACT is a hybrid modality that images the distribution of molecular-specific optical absorption
by irradiating the tissues with a non-ionizing diffuse laser pulse and recording the thermo-
elastically induced acoustic waves [21]. Since biological tissues are much less scattering to
sound than to light, PACT can image beyond the optical transport mean free path (∼1 mm),
which is a limitation for high-resolution optical imaging [22]. The penetration depth allows for
imaging the human cortex—the largest neural integration in the central nervous system of the
brain [23]. Compared to fUS, PACT is less sensitive to blood vessels perpendicular to the array
surface but more suitable for imaging those along the cortical surface in a large FOV due to the
widely adopted panoramic detection scheme. At certain near-infrared wavelengths, PA signals
are almost exclusively from hemoglobin, which is orders of magnitude more absorptive than
other tissue components, resulting in low background and a high sensitivity [24–26]. Hence,
PACT can quantify the concentrations of both oxyhemoglobin (HbO2) and HbR based on their
distinct spectral signatures in a linear relationship. The quantified hemoglobin concentrations are
convertible to oxygen saturation (sO2) and cerebral blood volume [26]. The diverse functional
contrast of PACT enables earlier detection of functional responses than BOLD fMRI [27,28].
With the help of functionalized contrast agents, PACT has also shown potential for cerebral
disease diagnosis and therapy [29,30]. Additionally, PACT promises portable, open, magnet-free,
and quiet-operation designs at a low cost and low maintenance [31].

Two major challenges remain to be addressed in translating PACT to the human brain. First,
existing PACT systems are either insufficiently sensitive to detect functional signals or too slow
to overcome motion artifacts [32–34]. Second, the skull-induced acoustic aberration has not
been sufficiently corrected for [35]. Centering around the two challenges, Section 2 reviews the
PACT systems for functional human brain imaging and the mainstream ultrasonic transducer
technologies. Section 3 discusses the properties and numerical models of the human skull. The
state-of-the-art image reconstruction algorithms that can correct for the skull-induced acoustic
aberration are reviewed in Section 4. A recently reported work establishing in vivo PACT of
human brain function is reviewed in Section 5. The summary and outlook are provided in Section
6. By describing the advances of the instruments, challenges associated with the skull-induced
acoustic aberration, and presenting an overview on the de-aberration algorithms, we hope that
this review can accelerate functional brain PACT transition from the bench to the clinic.

2. PACT systems for human brain imaging

2.1. Two-dimensional (2D) PACT systems

Functional PACT was first demonstrated in rodents [36]. The system consisted of five main
components—a laser source to excite PA signals from the brain, an ultrasonic transducer to record
the emitted PA waves, a mechanism to scan the ultrasonic transducer, a pre-amplifier to amplify
the received acoustic signals, and a data acquisition system to digitize the amplified signals
(Fig. 1(a)). A cylindrically focused single-element ultrasonic transducer was scanned around
the head to achieve full-view data acquisition for 2D cross-sectional imaging. The transducer
was focused in the elevational direction (z axis) but unfocused in the scanning plane (x-y plane).
While the elevational resolution originated from the cylindrical focusing, the in-plane resolution
was derived from the tomographic reconstruction. A similar system was later reported to image
through an ex vivo monkey skull (2–4 mm thick) [37–39]. The transducer was focused in the
scanning plane but unfocused in the elevational direction. The focus in the scanning plane was
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used as a virtual point detector to improve the spatial resolution and mitigate reconstruction
artifacts (Fig. 1(b)) [37]. The reconstructed image revealed the major cortical blood vessels.
However, due to the lack of elevational resolution, the image was blurred by the PA signals
outside the scanning plane. The same virtual detector concept was applied to a spherically
focused transducer which offered both in-plane and elevational focusing [40]. The system was
demonstrated to image through an ex vivo adult human skull of 4–9-mm thicknesses [40]. The
researchers also used a photon recycler to improve the illumination efficiency and achieved a
2.4-times signal-to-noise ratio (SNR) improvement [40]. In this setup, the photon recycler also
served as an acoustic barrier preventing superficial PA signals from propagating to the detector,
resulting in further improved elevational resolution. The acquired image revealed a canine brain’s
major cortical vessels (Fig. 1(c)).

Fig. 1. 2D PACT. (a) PACT of the rat brain cortex through the skull and skin using a
scanned cylindrically focused ultrasonic transducer [36]. (b) PACT of the monkey brain
cortex through a monkey skull using a scanned cylindrically focused ultrasonic transducer
[37]. (c) PACT of the canine brain cortex through an adult human skull using a scanned
spherically focused ultrasonic transducer [40]. (d) (1) The ring-shaped animal PACT system
was used to image (1) the mouse brain cortex through the skull in vivo, (2) the coronal plane
of the mouse brain through the skin and skull in vivo, (3) the whole mouse brain ex vivo, and
(4) the axial plane of the trunk with USCT and PACT in vivo [41–46]. (e) A wearable PACT
device for imaging the brain of a free-moving rat [47]. (f) PACT of the human breast using a
full-ring ultrasonic transducer array [48]. (g) PACT of the deep mouse brain using a scanned
linear ultrasonic probe [49]. (h) PACT for brain surgical guidance using a linear ultrasonic
probe without scanning [50]. In (b) and (c), the scalp was shown in the schematics but not
present in the ex vivo experiments. Adapted with permission [36,37,40–50].

To increase the imaging speed, researchers replaced the scanned single-element transducer
with a ring-shaped confocal transducer array, which has become the primary form of modern 2D
PACT systems (Fig. 1(d1)) [41,42,46,51–53]. Since each transducer element was cylindrically
focused in the elevational direction with a small azimuthal dimension, no virtual point detector
was assumed for high-quality imaging reconstruction. With 512 elements and 1:8 electronic
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multiplexing, a full-ring PACT system of a 5-MHz central frequency was developed to image
the brain cortex at a 1-Hz frame rate (Fig. 1(d2)) [42]. Other forms of ring-shape systems,
including half-ring confocal transducer arrays consisting of 64 elements and a 3/4-ring confocal
transducer array with 512 elements, were also reported to image brain cross-sections at a 10-Hz
frame rate (Fig. 1(d3)) and whole-brain morphology (Fig. 1(d4)) [51,52]. Later, researchers
developed full-ring systems with one-to-one-mapped acquisition channels to overcome the
limited-view issues associated with the partial-ring systems and the limited imaging speed due to
electronic multiplexing [43,41,46,53]. Some of these systems were also equipped with pulse-echo
ultrasound imaging capability, enabling both ultrasound computed tomography (USCT) and
PACT [54,46,43]. By incorporating the USCT-measured speed of sound (SOS) into the adaptive
PACT reconstruction algorithms, the image distortion induced by the acoustic heterogeneity of
biological tissues was substantially suppressed (Fig. 1(d5)) [46,54]. To monitor brain function in
awake animals, a miniaturized PACT device consisting of three ring-shaped 64-element transducer
arrays was developed, allowing the brain to be simultaneously imaged at three elevational planes
(Fig. 1(e)) [47]. A scaled-up version of the animal full-ring system was later employed for human
breast imaging (Fig. 1(f)) [48]. However, the transducer elements were designed to be flat and
unfocused in the elevational direction due to the large array diameter—the focal distance of an
element with a limited elevational dimension is far from the array center. Although the unfocused
ring array was unequipped with fine elevational resolution, it was scanned along the elevational
direction to form a cylindrical detection aperture to improve the elevational resolution. Therefore,
the 2D breast ring-array system still holds the potential for human brain imaging.

Off-the-shelf linear ultrasonic transducer arrays were also explored for 2D PACT. Functional
imaging of the deep mouse brain was reported using a 15-MHz linear ultrasonic probe scanned
around the animal’s head (Fig. 1(g)) [49]. Scanning a linear probe is analogous to using a
full-ring array, except that the former can provide denser sampling along the azimuthal direction
and requires fewer data acquisition channels at the cost of imaging speed. A linear probe was also
demonstrated for surgical guidance in an ex vivo human skull with tooltip illumination (Fig. 1(h))
[50]. However, the spatial resolution of a linear probe (without scanning) is highly anisotropic
due to the limited view, leading to considerable reconstruction artifacts [31,55–58]. Another
major drawback of using off-the-shelf probes is that they usually do not have pre-amplifiers
closely connected to the transducer elements, compromising the SNR [56].

Owing to its simplicity, relatively low cost, and acceptable image quality, a 2D PACT
system, especially the full-ring array system, is promising in functional human brain imaging.
Nevertheless, three potential challenges need to be considered for in vivo studies. First, without
elevational scanning, a large-diameter unfocused full-ring system (e.g., the breast system in
Fig. 1(d)) cannot differentiate the brain signals from the scalp signals due to the poor elevational
resolution. Adding elevational scanning improves the elevational resolution but decreases the
imaging speed. Second, the scalp signals can propagate into the skull and cause reverberation,
fundamentally a three-dimensional (3D) problem. Third, a 2D system is less sensitive than an
ideal 3D imaging system.

2.2. 3D PACT systems

Hemispherical detection aperture is considered the optimal and practical solution for 3D human
brain PACT because it can provide 2π-solid-angle detection and accommodate the shape of the
head. A system that employed a sparse hemispherical array was reported to scan around its
central axis for mouse brain imaging and along a 3D spiral trace for trunk imaging (Fig. 2(a))
[34,59]. A system with a similar transducer element arrangement but a larger array diameter
was reported for human breast and extremity imaging (Fig. 2(b)) [60,61]. The transducer array
was scanned along a 2D spiral pattern. It provided dense sampling, allowing a high-quality
image to be reconstructed. The key limitations of the system were its long acquisition time
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(120 s) and shallow penetration (<10 mm) [60]. To adapt the system to human brain imaging,
a longer laser wavelength (e.g., 1064 nm) can be adopted to improve the imaging depth. Also,
the array can be scanned for a smaller FOV to improve the imaging speed. Another system
composed of 16 arc ultrasonic transducer arrays, each consisting of 32 elements of 1-MHz central
frequency, was reported to image the human breast (Fig. 2(c)) [62]. The system combined fixed
and dynamic light sources to improve illumination uniformity. A similar but economic version
was also reported for human breast imaging. It scanned one quarter-ring transducer array for
ultrasound detection (Fig. 2(d)) [63]. The array was made of 96 wideband transducer elements,
allowing for denser sampling in the elevational direction and higher resolution. Two fiber bundles
were rotated together with the transducer array to illuminate the breast. For both systems in
Figs. 2(c) and (d), the illumination strategies provided uniform illumination, but the inconstant
light energy distribution at each scanning position violated the constant initial PA pressure
assumption defined by the 3D image reconstruction algorithm [64]. Thus, the illumination needs
to be fixed or numerically compensated for if the systems are used for functional human brain
imaging. Recently, another similar system using fixed illumination was reported for ex vivo
transcranial imaging (Fig. 2(e)) [65]. A quarter-ring transducer array of 64 elements centered at 1
MHz was scanned to form a hemispherical detection aperture. The acquired data were also used
to evaluate some advanced de-aberration reconstruction algorithms to be discussed in Section 3
[66]. More recently, a massively parallel system was developed to demonstrate in vivo functional
human brain imaging for the first time [27,28]. The system was made of 1024 parallel detection
channels evenly distributed on four quarter-ring arrays separated at 90 degrees. By mechanical
scanning, it acquired a structural image in 10 s and a functional volumetric image in 2 s. More
details regarding that study can be found in Section 4.

Fig. 2. 3D PACT. (a) A sparse hemispherical array for animal brain imaging [59]. (b) A
sparse hemispherical array for human breast and extremity imaging [60]. (c) A system
composed of 16 arc arrays for human breast imaging [62]. (d) A system with a quarter-ring
array for human breast imaging [63]. (e) A system with a quarter-ring array for transcranial
imaging [65]. (f) A 1024-element parallel system for functional human brain imaging [28].
Adapted with permission [59,60,62,63,65,28].

The transcranial PA spectrum has been measured to peak at∼0.75 MHz using 1-MHz ultrasonic
transducers [65]. Given that these transducers have maximum sensitivity at 1 MHz, which is
higher than 0.75 MHz, one can infer that the limiting factor for detecting higher-frequency PA
signals is the skull-induced frequency-dependent attenuation rather than the transducer’s limited
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bandwidth. In other words, using higher-frequency transducers will not improve the detection
of transcranial PA signals. On the other hand, although using lower-frequency transducers can
improve the detection of transcranial PA signals, the upper bandwidth of such transducers is
not high enough to resolve superficial features, such as scalp vessels and boundaries, for use in
skull co-registration and modeling. Therefore, the 1-MHz center frequency, which optimizes
the tradeoff between the acquisition of transcranial PA signals and the resolution for superficial
features, is desirable for transcranial human-brain PACT.

Other forms of 3D PA imaging systems include acoustic-resolution photoacoustic microscopy
(AR-PAM), optical-resolution photoacoustic microscopy (OR-PAM), and Fabry–Pérot etalon
sensor-based PACT scanner, among others [67,68]. Typical AR- and OR-PAM form images by
scanning a single-element transducer in a 2D plane and reconstructing depth information based on
the signal arrival time. Because cross-sectional images are acquired, but an inverse reconstruction
problem is not involved, PAM systems can be referred to as photoacoustic tomography (PAT) but
not computed tomography. Depending on the transducer frequency, AR-PAM can typically image
∼3 mm deep, whereas OR-PAM can image ∼1 mm deep [67]. The Fabry–Pérot etalon PACT
uses an optical ultrasonic transducer and reconstructs images using the time reversal algorithm
[68]. Overall, these systems are considered unsuitable for noninvasive human brain imaging due
to their limited FOVs, low imaging speeds, and limited penetration.

2.3. Ultrasonic transducer technologies

Based on the sensing mechanism, ultrasonic transducers fall into two main categories: electric
transducers and optical detectors. Electric transducers can further be classified as conventional
piezoelectric transducers, piezoelectric micromachined ultrasonic transducers (PMUTs), and
capacitive micromachined ultrasonic transducers (CMUTs) [69]. Based on the detection strategies,
optical ultrasonic detectors can be classified as interferometric detectors and refractometric
detectors [70]. Figure 3 shows the representative structures of electric transducers and optical
detectors.

Fig. 3. Schematics of electric ultrasonic transducers and optical ultrasonic detectors,
including (a) piezoelectric transducers, (b) CMUTs, (c) PMUTs, and (d) optical (planar
Fabry-Pérot, interferometric type) detectors. (d) was adapted with permission [70].

Piezoelectric transducers are most often used [71]. In fact, the systems in Figs. 1 and 2, except
Fig. 2(b), all adopted piezoelectric transducers (the transducer array in Fig. 2(b) was made of
CMUTs). Compared with piezoelectric transducers, PMUTs and CMUTs are compatible with
application-specific integrated circuits (ASICs), which may benefit future PACT systems [72].
Recently, transparent CMUTs have also been reported, potentially permitting more efficient
illumination and detection for PACT [73–75]. Various types of optical detectors with excellent
performance have been developed based on optical fibers [76], free-space optics [68], and polymer
waveguides [77]. Benefitting from the modern semiconductor infrastructure, miniaturized optical
detectors have recently been made into photonic chips, allowing for submicrometer element
size [78] and fine pitch arrays with parallel readout [79]. Nevertheless, compared with electric
transducers, optical detectors offer a relatively low sensitivity for an optimal half-wavelength
detection area at frequencies below ∼1 MHz [80,81].
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For functional human brain imaging, which aims to detect PA signal changes of a few percent,
SNR is the most critical design criteria [27,28]. The SNR is mainly determined by the transducer
sensitivity and the transducer array’s filling factor. For a PACT system, although the transducer
elements must be small enough to provide a sufficiently large coverage angle, the element size
need not be smaller than half wavelength, because an overly small element size does not improve
imaging performance. Therefore, practitioners should consider whether a specific technology
allows an element size of half wavelength to be manufactured and evaluate the sensitivity at the
optimal half-wavelength active area. Piezoelectric transducers can be made to optimal sizes, and
their sensitivities are scalable with the active areas. For CMUTs and PMUTs, although their
basic unit is a cell of dozens or hundreds of micrometers, multiple cells can be densely packed
into an element of arbitrary size or shapes using the microfabrication process [82,83]. A typical
cell filling factor of a CMUT or PMUT element is ∼0.4 [84]. Also, the sensitivities of CMUTs
and PMUTs are scalable with their active areas. In contrast, an optical detector’s sensitivity is
generally independent of its active area. For a 1-MHz (upper cut-off frequency) PACT system, an
element size of ∼0.75 mm should be used. Under this condition, the sensitivities, defined as the
noise equivalent pressures per square root of unit bandwidth, are ∼1.5 mPa/

√
Hz for piezoelectric

transducers [81], ∼1.4 mPa/
√

Hz for CMUTs [84], ∼0.3 mPa/
√

Hz for PMUTs [85], and ∼2.0
mPa/

√
Hz for optical detectors [68,80].

Overall, piezoelectric transducers, PMUTs, and CMUTs are all competitive in human brain
PACT. However, PMUTs and CMUTs have not been widely commercialized, and the device
performance may vary with wafer substrates, leading to potential challenges in fabricating large
arrays with hundreds to thousands of device chips.

3. Properties and numerical models of the human skull

For transcranial PACT, the presence of the skull has both optical and acoustic effects. At 956-nm
optical wavelength, the effective attenuation coefficient of the human skull was measured to be
∼1.9 cm–1, corresponding to a transmittance of ∼0.5 for a bone thickness of 0.4 cm [86]. A
higher transmittance is expected at 1064 nm due to the lower scattering coefficient. 1064 nm is
the preferred optical wavelength for transcranial PACT. First, the dominant absorber at 1064 nm,
HbO2, can be directly measured with a single wavelength. Second, high-energy pulsed Nd:YAG
lasers at 1064 nm are widely available. Third, the ANSI safety limits allow for a higher maximum
permissible exposure at 1064 nm than at a shorter wavelength [87]. Like transcranial pulse-echo
ultrasound imaging, the major obstacle for transcranial PACT is the skull-induced acoustic
aberration. Unlike conventional ultrasound imaging, PACT does not suffer speckle artifacts and
only experiences one-way acoustic aberration, posing a more straightforward problem to solve
[88,89]. Since the development of transcranial PACT reconstruction frameworks mainly centers
around the skull-induced acoustic problems, we will discuss the skull acoustic properties and
numerical models in this section before reviewing the image reconstruction algorithms in Section
4.

3.1. Human skull properties

The adult human cranial bone is a sandwiched structure made of the inner table, outer table, and
diploe layer in the middle (Fig. 4) [90]. The inner and outer tables are cortical bones anatomically
different from the diploe layer, which is trabecular (cancellous) bone. For infants under about
four years old, the cranial vaults are typically unilaminar cortical bones [91]. The cortical bone is
a solid and dense material with a density ranging from 1.8 to 2.2 g/cm3 [92]. The trabecular bone
consists of lamellar packets of irregular plates and rods, among which are fluid bone marrow cells
[92]. The trabecular bone is highly heterogeneous, anisotropic, and porous. The element size is
between 50 and 150 µm with a separation distance between 0.5 and 2 mm [93]. The trabecular
bone’s density falls between 0.3 and 1.3 g/cm3 with an average porosity (void fraction) of 24%
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[90,93]. Since the cortical bone’s density is higher than that of the trabecular bone, acoustic
energy is mostly absorbed by the cortical bone [94,95]. At 1 MHz, the cortical bone’s acoustic
attenuation coefficient is ∼2.7 dB/cm for longitudinal waves and ∼5.4 dB/cm for shear waves.
For solid bones, the phase velocities of longitudinal and shear waves are ∼3000 m/s and ∼1500
m/s, respectively [90,96].

Fig. 4. Binarized x-ray microtomographic image of an adult cranial bone slice with 10-µm
resolution. Adapted with permission [90].

The cranial bone’s thickness is dependent on the anatomical location and the subject’s gender
and age. Figure 5 maps the average skull thicknesses based on the data acquired from 76 people,
including 66 males and 10 females aged from 10 to 60 [97]. The temporal and parietal bones
demonstrate relatively small thicknesses, making them a potential sally port for transcranial
PACT.

Fig. 5. Thickness maps of the human skull. (a) Skull anatomies. Average skull thicknesses
of (b) males and (c) females at various anatomical locations. L/R: left/right; FB: frontal
bone; TB: temporal bone; OB: occipital bone; PB: parietal bone; FCP: frontal central point;
OCP: occipital central point. Error bars: standard deviations across subjects of the same
genders.

3.2. Skull-induced acoustic aberration

The human skull presents impedance mismatch with the ambient soft tissues and coupling media
and distorts acoustic amplitudes and phases. Figure 6 categorizes the skull’s acoustic effects into
three main categories: attenuation, waveform distortion, and signal contamination.

Wave reflection, absorption, and scattering are the main attenuation causes. Reflection results
from the acoustic impedance mismatch between the cortical bone and ambient soft tissues at
the inner and outer skull boundaries. Absorption is induced by the conversion of mechanical
energy to heat in the cortical bone, whereas acoustic scattering mainly occurs in the diploe layer.
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Fig. 6. Acoustic effects of the skull.

Over the diagnostic ultrasound frequency range, the acoustic absorption can be described by the
frequency power law [98,99]:

α(r, f ) = α0(r)f y, (1)

where r ∈ V represents the spatial location, f denotes frequency in MHz, α0(r) is the frequency-
independent absorption coefficient in Np/MHzy/cm (1 Np/MHzy/cm= 8.686 dB/MHzy/cm),
and y stands for the power law exponent (typically between 0.9 and 2.0) [98]. For a homogeneous
attenuation coefficient of 2.7 dB/MHz2/cm and a scattering coefficient of 5.5 dB/cm [90], the
transmittance of a normally incident acoustic wave was estimated at 0.75 MHz for different skull
thicknesses in Fig. 7. Scattering and reflection are shown to dominate the attenuation, and the
transmittance is ∼22% for a skull thickness of 4 mm. For a PA source in the skull, the acoustic
waves’ incident angles will differ at different skull locations, resulting in different transmission
coefficients at the skull boundaries (to be shown in Fig. 8). The average acoustic transmittance
measured over a hemispherical detection aperture that partially enclosed the skull was ∼4%,
corresponding to ∼80% pressure attenuation [65].

Fig. 7. Acoustic transmittance at 0.75 MHz in the presence of the human skull due to the
three causes.

Waveform distortion is another acoustic effect of the skull. Signal broadening is induced by
the frequency-dependent attenuation. The relationship between acoustic dispersion and acoustic
absorption is governed by [100]

1
c2(r)

−
1

c1(r)
= α0(r)tan

(︂ πy
2

)︂
(f y−1

2 − f y−1
1 ), (2)
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Fig. 8. Pressure transmission coefficients at the skull boundaries. (a) Pressure transmission
coefficients versus incident angles at the soft-tissue–skull interface and (b) at the skull–soft-
tissue interface. Adapted with permission [65].

where c1 and c2 are the sound speeds at frequencies f1 and f2, and y ≠ 1. An alternate expression
for y= 1 is available [101]. Equation (2) also indicates that when the absorption coefficient is
frequency square-dependent (y= 2), acoustic dispersion is negligible. Wave refraction occurs at
the skull boundaries due to the sound speed mismatch between the ambient soft tissues and the
cortical bone. When acoustic waves propagate from the soft tissues to the bone or vice versa,
wave conversion occurs at their interfaces due to the support of shear stress by the bone. The
conversion introduces acoustic distortion due to the different phase velocities of longitudinal
(compressive) and shear waves. The degree of wave mode conversion is dependent on the angles
of incidence and refraction at the inner and outer skull boundaries (Fig. 8) [65,102]. At the
soft-tissue–skull interface, the critical angle for an incident longitudinal wave is approximately
33°, below which the incident wave is partially converted to longitudinal and shear waves [65].
Above the critical angle, only shear waves are converted and transmitted into the skull. The
pressure transmission coefficient can be greater than unity due to the higher acoustic impedance
of the longitudinal wave in the skull than in the soft tissues, although the intensity transmittance
can never surpass unity. There is no critical angle for the longitudinal wave at the skull–soft-tissue
interface due to the higher phase velocity of longitudinal waves in the skull than in the soft tissues.
The critical angle for the shear wave at the skull–soft-tissue interface is around 75°.

Acoustic scattering in the diploe layer scrambles the waves. The degree of scattering depends
on the ratio between the scales of the trabecular units and the acoustic wavelength, which typically
falls between ∼0.025 and ∼0.075 for longitudinal waves at 0.75 MHz [90,93,96]. Another type of
waveform distortion is the reverberation of the brain signals inside the skull, which prolongs the
detected signals. Due to the exponential decay of optical fluence with depth, a large amplitude
difference exists between the PA signals from the scalp and those from the brain. Similar to the
brain signals’ reverberation, these superficial signals propagate into the skull and reverberate,
contaminating the signals from the brain in the temporal domain. One can visualize the impacts
of the human skull on transcranial photoacoustic imaging in a recent simulation work [103].

3.3. Numerical models of the skull

Obtaining a numerical model of the skull is essential for de-aberrating the transcranial PA signals,
similar to the situations for transcranial high-intensity focused ultrasound (HIFU) [104–106].
Theoretically, x-ray CT is most suitable for depicting cortical bone structures, but it has limitations
for in vivo applications due to the ionizing radiation exposure [107]. In comparison, MRI is
intrinsically less suitable for depicting cortical bone structures due to the low proton density
(20% of water) and short signal lifetime (390 ms for T2 at 3T) [108]. Nevertheless, with the
development of ultra-short echo time (UTE) and zero time-to-echo (ZT) sequences, MRI has been
demonstrated to provide imaging characteristics ideally suited for depicting and segmenting the
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cranial bone structures [109–112]. Figure 9(a) displays the skull images acquired using MRI (ZT
sequences; inverse logarithmic scaling; bias correction) and x-ray CT, demonstrating an excellent
agreement [111]. An approximately linear correlation was also observed between the MRI and
x-ray CT images for Hounsfield numbers between 300 HU and 1,500 HU (Fig. 9(b)) [111]. Since
an MRI image is convertible to a Hounsfield map using such a linear relationship, the skull’s
acoustic parameters can be retrieved based on the relationship between Hounsfield numbers and
acoustic properties [112,113]. Alignment between the lab coordinates and the numerical skull
model can be performed using the superficial blood vessels imaged by both MRI angiography and
PACT [27]. When MRI or x-ray CT is used to improve transcranial PACT, PACT still holds great
value in potential applications, such as routine assessment of post-operative brain restoration,
studying brain networks during social interaction, which is impractical using a closed-bore MRI
or x-ray CT machine, and non-invasive brain-computer interface. In these potential applications,
the MRI or x-ray CT scanning only needs to be carried out once. However, the ideal form of
transcranial PACT should be independent of MRI or x-ray CT.

Fig. 9. MRI and x-ray CT of the human skull. (a) Coregistered MRI and x-ray CT images.
(b) The 2D-histogram distribution indicates an approximately linear correlation between
x-ray CT and MRI for the bone between 300 HU and 1,500 HU. (c) Schematic of USCT (left)
and a wave propagated from a single element transducer (right). (d) A simple homogeneous
head model (1) was used as the initial guess for AWI (2), which was later used as the
preconditioner for FWI (3). The ground truth is displayed in (4). Adapted with permission
[111,114].

To obviate the reliance on MRI or x-ray CT, we envisage two alternative approaches to modeling
the skull. First, a PACT system can be designed to enable simultaneous USCT. It has been
demonstrated that the combination of transmitted transcranial USCT with adaptive waveform
inversion (AWI) followed by full-wave inversion (FWI) can produce a sub-millimeter-resolution
skull model with a sufficient SNR using a sub-MHz ultrasound frequency (Fig. 9(c)) [114]. FWI
is an iterative reconstruction technique originally developed by the petroleum industry to image
hydrocarbon reservoirs and requires a relatively accurate initial guess of the model [115]. AWI is
a modified form of FWI and is less sensitive to the preconditioner but typically cannot provide
as well resolved models as those produced by FWI. Therefore, using the AWI-generated model
as a preconditioner for FWI can improve the skull model quality [114]. Figure 9(d) displayed
the recovered acoustic properties of the skull by FWI and AWI using USCT. In this approach,
the concurrent measurements also allow for automatic co-registration between the USCT and
PACT images. However, the major challenge associated with this approach is the considerable
computational time. Another method of modeling the skull is to use a skull thickness atlas
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statistically built based on the established database, such as Fig. 5 [116]. The inner boundary
of the scalp imaged by PACT can be treated as the skull’s outer boundary [65]. Combining
the outer boundary and the thickness, one can estimate the skull’s inner boundary. However,
this subject-nonspecific method does not measure the exact acoustic properties or geometries of
each skull and may need parameter tuning and iterative reconstruction to achieve a sufficient
reconstruction quality. Alternatively, this approach can potentially be combined with the first
approach by using the atlas as a preconditioner for FWI, where one may not only increase the
accuracy of the initial guess but also reduce the computational time by skipping the AWI step.

4. Computational frameworks for transcranial PACT

Given the considerable progress in solving the inverse problem of transcranial PACT, a survey on
this topic may facilitate comparison among different algorithms and catalyze the implementation
of the developed algorithms in solving in vivo problems. This section is restricted to the problem
of estimating the initial acoustic pressure distribution. Recovering the optical properties of the
brain, which is not necessarily required in quantifying the PA signals’ fractional changes for
functional imaging, will be touched on briefly in Section 5.

4.1. PACT forward model in a lossy and acoustically heterogeneous fluid medium

To describe the power-law absorption and dispersion effects, wave equations that employ time-
domain fractional derivative operators were proposed [98,99,117,118]. However, the operators
posed a significant memory burden for numerical implementation [119]. To overcome the issue,
a wave equation that modeled the power law absorption using fractional Laplacian operators
was proposed [120]. Later on, the dispersion term was introduced into the equation of state via
another fractional Laplacian operator [121]:

p(r, t) = c0(r)2
[︃
1 − τ(r) ∂

∂t
(−∇2)

y
2−1

− η(r)(−∇2)
y−1
2

]︃
ρp(r, t), (3-a)

where p(r, t) is the acoustic pressure, c0(r) denotes the SOS in an adiabatic system, and ρp(r, t)
stands for the acoustic density (sound-induced perturbation of the fluid density from its ambient
value ρ0(r)). The second and third terms on the right-hand side account for the required power
law absorption and dispersion. τ(r) and η(r) describe the acoustic absorption and dispersion
proportionality coefficients defined as [121]

τ(r) = −2α0(r)c0(r)y−1, η(r) = 2α0(r)c0(r)ytan
(︂ πy

2

)︂
. (3-b)

Additionally, the following two equations govern Newton’s second law and conservation of mass:

∂u(r, t)
∂t

= −
1
ρ0(r)

∇p(r, t), (3-c)

∂ρp(r, t)
∂t

= −ρ0(r)∇ · u(r, t), (3-d)

where u(r, t) denotes the particle velocity. The initial conditions are

p0(r) ≡ p(r, t)|t=0 = 0, u(r, t)|t=0 = 0. (3-e)

Equation 3 forms the forward wave model of PACT in a lossy and heterogeneous fluid medium.
Defining the pressure recording domain as R and the recording positions r′ ∈ R, the initial
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pressure distribution p0(r) can be mapped to the measured time-varying pressure distribution
p(r′, t) using a forward operator F:

p(r′, t) = Fp0(r). (4)

For a lossless and acoustically homogeneous infinite medium, Eq. (4) has the explicit form
[64]:

p(r′, t) = 1
4πc2

0
∫
V

d3rp0(r)
d
dt
δ(c0t − |r′ − r|)

|r′ − r| , (5)

where c0 is the constant SOS, and δ(·) is the Dirac delta function. One can rewrite Eq. (5) as

p(r′, t) = 1
4πc2

0

d
dt

(︃
g(r′, t)

t

)︃
, (6)

where g(r′, t) = ∫
V

d3rp0(r)δ(c0t − |r′ − r|) represents the spherical Radon transform connecting

g(r′, t) with the integral of rp0(r) over a spherical surface that has a radius of c0t.

4.2. PACT forward model based on elastic wave equations

The previous section assumed a lossy and heterogeneous fluid medium where the shear stress or
viscosity was ignored by the fluid wave equations. To describe the propagation of transverse
shear waves in the bone, a more accurate reconstruction method can be developed from the
elastic wave equations. In the elastic wave equations, instead of using scalar pressure, a 3×3
stress tensor matrix is defined:

σ(r, t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
σ11(r, t) σ12(r, t) σ13(r, t)

σ21(r, t) σ22(r, t) σ23(r, t)

σ31(r, t) σ32(r, t) σ33(r, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7-a)

Here, acoustic absorption within the skull is assumed to be frequency invariant [90]. This
assumption is reasonable because the ultrasonic transducer’s bandwidth limits the bandwidth
of the detected PA signals. Defining u= [ u1(r, t), u2(r, t), u3(r, t)] as the particle velocity vector
and α̂(r) in s−1 as the acoustic absorption coefficient which represents the damping force at unit
particle speed for unit mass, the wave propagation can be modeled by the following two equations
[122–125]:

∂u(r, t)
∂t

+ α̂(r)u(r, t) = 1
ρ0(r)

(∇ · σ(r, t)), (7-b)

∂σ(r, t)
∂t

= λ(r)tr(∇u(r, t))I + µ(r)(∇u(r, t) + ∇u(r, t)T ), (7-c)

subject to the initial conditions:

σ0(r) ≡ σ(r, t)|t=0 = −
1
3

p0(r)I, u(r, t)|t=0 = 0. (7-d)

In Eq. 7–c, λ(r) and µ(r) represent the Lamé parameters describing the full elastic tensor
of the linear isotropic medium. The tr(·) operator calculates the trace of a matrix, and I is the
identity matrix. It should be noted that the initial pressure p0(r) is compactly supported in a fluid
medium with shear modulus µ(r) = 0 [126]. Similar to Eq. (4), the initial pressure distribution
p0(r) can be mapped to the measured pressure distribution p(r′, t) using a forward operator H:

p(r′, t) = Hp0(r). (8)

H depends implicitly on the discretized shear and longitudinal sound speed distribution, density
distribution, and absorption distribution. These quantities can be specified by a skull model,
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which can potentially be obtained from other imaging modalities, such as MRI, x-ray CT, or
ultrasound tomography [65]. The effects of the transducer’s electrical and spatial impulse
responses were ignored in Eqs. (3) and 7, but they can be incorporated readily [35,66,127].

4.3. Discretization of the forward models

To solve the wave equations using numerical methods, the detected pressure and object function
need to be both temporally and spatially discretized, and the material parameters need to be
spatially discretized. Numerical methods for solving the acoustic wave equations fall into three
main categories: finite difference (FD) methods, finite element (FE) methods, and spectral
methods [35,128,129]. FD and FE methods are local because the wave equations are solved
at each point based on its neighboring points. Spectral methods are global as they employ the
information from the entire wavefield, allowing computation to be performed on coarser grids
without losing accuracy [129,130]. For transcranial PACT reconstruction, the skull boundaries
need to be carefully handled because of the sharp transition of acoustic properties. For FD and
spectral methods, a constant grid shape and size are commonly used across the entire finite
domain [66,126,131]. To better capture the skull curvature, denser grids need to be defined,
which poses a computational challenge. For the FD time-domain (FDTD) method, the widely
adopted staggered grid finite difference scheme requires the skull boundaries to be numerically
smoothed [35,66,90,126,127]. The effects of smoothing on reconstruction accuracies may require
further evaluation. For spectral methods, when the entire finite domain is heterogeneous with a
smooth transition or simply homogeneous, the solution can be of high accuracy [129]. However,
the sharp acoustic property transition at the skull boundaries may violate the assumptions. FE
methods can handle sharp boundaries well using adaptive meshing [128]. However, compared to
FD and spectral methods, FE methods require a longer computation time given the same degrees
of freedom [132]. Although the sharp skull boundaries can potentially restrict the implementation
of a particular numerical method, no study has compared the reconstruction accuracies using the
three methods side by side.

4.4. Image reconstruction

Comprehensive reviews of PACT reconstruction methods can be found in several review articles
[35,133–135]. The universal back-projection algorithm has been the most popular method
for PACT reconstruction [64,133,65,33,47,60,62]. Other methods include the inverse Radon
transform and time-domain delay-and-sum (beamforming) techniques [136,137]. These canonical
methods assume a lossless and acoustically homogeneous medium and that the PA signals are
densely sampled on a surface enclosing the object. To compensate for the acoustic heterogeneity
induced by the skull, ray-based methods were proposed to divide the wave propagation into layers
and account for the skull-induced acoustic aberration in each layer individually (Fig. 10) [65,138].
These approximate methods were computationally efficient and improved the reconstruction
quality to some extent but could not separate the longitudinal and shear waves or correct for
reverberation. Additionally, to prevent a single back-projected ray from crossing two or more
layers, a limited number of virtual detectors in one layer were used to estimate the pressure in
the next layer, introducing partial-view problems. Frequency-domain reconstruction methods
have also been studied. Certain detection apertures can be implemented efficiently using the fast
Fourier transform [139–141]. Nevertheless, frequency-domain reconstruction methods also need
to assume an acoustically homogeneous medium.

Time reversal reconstruction algorithms form a PACT image by running a numerical model
of the forward wave equations backward in time [142–144]. When the detection aperture fully
encloses the object and the sampling time is sufficiently long for the PA waves to completely
escape the detection enclosure, time reversal yields a theoretically exact reconstruction of the
object function p0(r) [145]. Like the back-projection methods, a partial-view detection aperture
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Fig. 10. Ex vivo PACT images reconstructed using (a) the universal back-projection
algorithm without the skull and (b) with the skull, and using (c) the layered back-projection
algorithm with the skull. Adapted with permission [65].

leads to information incompleteness and an inexact solution. However, time reversal methods can
compensate for the medium loss using gain that inverts the attenuation [144]. For example, to
account for the acoustic absorption, the absorption terms in Eqs. (3)–a and 7–b can be reversed
in signs. However, care should be taken when performing compensation because numerical
instability may occur. Heterogeneity in sound speeds can also be incorporated into time reversal
methods [143,146]. The universal back-projection and time reversal algorithms were compared
by imaging two line-shape targets through an ex vivo money skull (Fig. 11) [113].

Fig. 11. Ex vivo PACT images reconstructed using (a) the universal back-projection
algorithm without the skull and (b) with the skull, and using (c) the time reversal algorithm
with the skull. Adapted with permission [113].

PACT reconstruction can also be implemented in a lossy elastic medium by directly applying
the adjoint of the discretized H operator to the discretized recorded pressure data. The exact form
of the discrete and continuous adjoint operators have been derived, making this approach readily
available and computationally efficient [126,147]. Compared with the universal back-projection
algorithm, the adjoint reconstruction can effectively mitigate skull-induced wavefront aberration
(Fig. 12) [126]. However, the adjoint operator does not compensate for the acoustic attenuation.
Instead, the attenuation term applies the attenuation to the measured pressure signals twice if not
turned off.

Fig. 12. (a) Photograph of a skull-mimicking plastic globe with “blood vessels” painted on
the inner surface. Ex vivo PACT images were reconstructed through the globe using (b) the
universal back-projection algorithm and (c) the adjoint operator. Adapted with permission
[126].

When the adjoint operator does not produce adequate image quality, the ability to compute
the adjoint operator facilitates gradient-based iterative algorithms [66,126]. In fact, forming the
reconstruction problem as an optimization problem has been widely adopted in modern medical
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imaging modalities, such as x-ray CT and PET [148–150]. An iterative reconstruction algorithm
that seeks to compute the penalized least-squares estimates has been reported [66]:

p̂0 = argminp0≥0
∥︁∥︁p − Hp0

∥︁∥︁2
W + γR(p0), (9)

where vectors p and p0 represent the discretized observation data (after being deconvolved with the
system responses) and discretized initial pressure, respectively. γ is the regularization parameter,
and R(·) is a regularizing penalty term, such as the total variation penalty [66]. The quantity
∥·∥2

W stands for a weighted l2 norm where the diagonal weight matrix W contains elements
inversely proportional to the variance of the measurement data. Modern iterative algorithms,
such as the fast iterative shrinkage/thresholding algorithm (FISTA), can be implemented with
parallel computing to improve computational speed [66,151–155]. The main advantage of the
optimization-based approach over the time reversal approaches is that it offers the flexibility to
mitigate the effects of data incompleteness via the regularization term. Also, numerical stability
issues that exist in time reversal can be mitigated [66,144]. Figure 13 compares the reconstructed
images using the adjoint and optimization-based methods [66].

Fig. 13. (a) Photograph of a skull-mimicking plastic globe with “blood vessels” painted on
the inner surface and scalp vessel-mimicking phantoms placed on the outer surface. Ex vivo
PACT images were reconstructed through the globe using (b) the adjoint method and (c) the
iterative optimization-based method. Adapted with permission [66].

Given the potential estimation errors of the skull’s acoustic properties, one can employ a joint
reconstruction approach to further improve the image quality by concurrently optimizing the
PACT initial pressure distribution and the skull acoustic parameters. Based on the elastic forward
models, a PACT joint reconstruction problem can be described as [127,156]

(p̂0, ĉl, ĉs, ρ̂0, α̂) = argminp0,cl,cs,ρ0,α
∥︁∥︁p − Hp0

∥︁∥︁2
W + γR(p0), (10)

where ĉl, ĉs, ρ̂0, and α̂ denote the estimates of the longitudinal wave velocity cl, shear wave
phase velocity cs, density ρ0, and acoustic attenuation α, respectively. The algorithm iteratively
optimizes the skull acoustic parameter estimates and the initial pressure distribution until
convergence [127]. The gradients of the cost function can be computed using the adjoint operator
[126]. Since this method allows the acoustic properties and initial pressure distribution to be
estimated simultaneously, a more accurate estimation of the initial pressure distribution can be
achieved. Figure 14 compares the images reconstructed using the universal back-projection,
conventional optimization-based (Eq. (9)), and joint reconstruction methods based on simulation.

Recently, the Bayesian framework was proposed for PACT reconstruction [157–160]. It defines
all parameters as random variables. The measurements, the model, and the prior information
about the parameters were analyzed using maximum a posteriori estimate to solve the inverse
problem. Figure 15 displays the mouse head images reconstructed using the Bayesian framework
and time reversal. The Bayesian approach is promising for transcranial PACT as it accounts for
the uncertainties in parameters, models, and geometries and demonstrates advantages over time
reversal algorithms when the detection view is limited. However, further development is required
before it can be applied to an acoustically absorptive and heterogeneous medium.

In addition to the purely model-based algorithms, data-driven techniques, especially deep
learning (DL), have been increasingly investigated for PACT reconstruction [161–165]. Driven
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Fig. 14. (a) X-ray CT image of an adult human skull with cortical bones spatially encoded
by colors. Transcranial PACT was simulated using (b) the universal back-projection method,
(c) the conventional iterative optimization-based method, and (d) the joint reconstruction
method. Adapted with permission [127].

Fig. 15. The mouse head imaged by PACT and reconstructed using (a) the Bayesian
framework and (b) time reversal. Adapted with permission [158].

by data, DL learns end-to-end transformations without the need for explicit definition of an
analytical model. Training the DL network can also be understood as an optimization problem
related to the aforementioned Bayesian framework [161]. So far, DL has been successfully
applied to reconstruct PACT images from limited-band/limited-view/sparse measurements
given forward operators [135,166–168] and to approximate inverse operators, which otherwise
involved solving the forward and adjoint problems repetitively [169,170]. Although the use
of DL for transcranial PACT has not been established, some reported works are relevant and
potentially transferrable to transcranial PACT. For example, an encoder-decoder network was
developed to account for the acoustic and optical attenuation in the deep tissue during PACT
reconstruction [171], a U-net-based convolutional neural network (CNN) was proposed to correct
for the SOS-heterogeneity-induced aberration in PACT images [172], several DL networks were
designed to produce full-bandwidth output signals from limited-band raw signals to improve
the reconstruction resolution [166,173], and various DL networks were employed to remove the
reconstruction artifacts or denoise the measured data [174–176]. In another relevant work, the
vector space similarity (VSS) model was used in conjunction with a simulated training data set to
correct for the skull-induced distortion in transcranial PAM [177]. However, this method is not
strictly DL due to the lack of a layered network. For the problem of DL-based transcranial PACT
reconstruction, two major issues remain to be addressed. One is the lack of paired training data
which are essential for fully supervised training. Two approaches can potentially overcome this
issue. Experimentally, an acoustic point source can be scanned over a volume inside the ex vivo
skulls to acquire the location-dependent point spread functions. The acquired point source data
can be synthesized to form arbitrary features to mimic realistic targets. The second approach
uses pure simulation, where the ground truth can be extracted from the clinical x-ray CT or
MRI images. By simulating the forward problems using these features as the initial pressure
sources, one can create training data for the network. Except for the fully supervised training,
a semi-supervised approach can also be considered. For example, physics-informed neural
networks can be developed by directly incorporating the physical models into the loss function
such that the network learns much of the physics by the terms in the loss function [161]. The
other issue is the lack of a data-consistency term, which may cause challenges in assessing the
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reconstruction correctness. As a result, further networks are expected to consider uncertainty
and provide an uncertainty estimate of the reconstruction. For instance, null-space projection can
be used to ensure data consistency after postprocessing in DL-based PACT reconstruction [178].
Overall, given the many opportunities that a network can be incorporated into the reconstruction
pipeline, it is expected that DL will play a revolutionary role in transcranial PACT reconstruction.

5. PACT of human brain function

Studies of functional brain PACT have mainly been reported in animal models, for which
several comprehensive review articles can be consulted [22,45,179,180]. For human brain PACT,
researchers have mainly focused on ex vivo structural imaging, and in vivo functional imaging
had not been demonstrated until recently [27,28]. In that study, a newly developed 2.12-MHz
1024-element parallel system was reported. The system costs ∼US $0.44 million before tax,
which is less expensive than a 7T MRI system (∼US $6.5 million for Siemens Terra) [181]. The
PACT system was used to image the functional responses of hemicraniectomy human subjects.
Although the unique subject population provided an acoustic window allowing for aberration-free
image reconstruction, the achieved functional results revealed PACT’s capability in mapping
human brain function with comparable performance to 7 Tesla MRI—the current gold standard
in the clinic. It is believed that some of the results and methodologies from that study can inspire
future related research.

5.1. Imaging schemes

Figure 16 shows a subject being imaged by the PACT system [27]. Supine, lateral, and prone
imaging positions were adopted to optimize the tradeoff between comfort and stability [27,28].
A custom-designed head stabilizer was used to reduce the motion artifacts during scanning.
Two laser wavelengths, 1064 nm from an Nd:YAG laser fired at 10 Hz and 694 nm from a
ruby laser fired at 1 Hz, were employed to excite PA signals from endogenous hemoglobin
(Hb). The measurement started with the baseline mode to acquire brain angiography followed
by the functional mode to image brain function. The scanning configuration resulted in a
10-cm–diameter FOV on the head, an isotropic spatial resolution of 350 µm, and a temporal
resolution of 10 s (1064 nm) and 100 s (694 nm) for the baseline mode and 2 s for the functional
mode. Once configured to acquire data at a 20-MHz sampling frequency, 12-bit resolution, and
2000-point sampling length, one functional volumetric scan produces a data size of around 60
MB. If the reconstruction is performed at a volume size of 100×500×500 (resulting in a FOV of
20×100×100 mm3 at a voxel size of 0.2×0.2×0.2 mm3) with two-times azimuthally interpolated
channel data, the GPU-accelerated computational time is around 140 s (GeForce GTX 1080 Ti,
Nvidia, Corp.)

Fig. 16. A subject’s head being imaged by the PACT system. Adapted with permission
[27].
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Five block-designed benchmark motor and language tasks were investigated. They were finger
tapping, lip puckering, tongue tapping, story listening, and word generation. N = 4 subjects were
recruited for the study, and most tasks were repeated for three times. The BOLD fMRI results
non-concurrently obtained using a 7 Tesla scanner were used to validate the PACT functional
results.

5.2. Functional results

For both PACT and BOLD fMRI, the brain activities were extracted based on the PA signals
measured at the 1064-nm optical wavelength at each voxel based on the General Linear Model and
presented in t-scores on the top of T1-weight MRI images (Fig. 17(a)) [27,28,182]. The maximum
imaging depth was ∼19 mm below the skin surface or ∼11 mm under the cortical surface. An
average dice coefficient and spatial correlation coefficient of ∼0.4 among all motor tasks indicated
a fair-to-moderate agreement. An average center-of-mass error of ∼6 mm among all motor tasks
demonstrated acceptable variations. For story listening, an average dice coefficient and spatial
correlation coefficient of ∼0.5 indicated a moderate agreement. An average center-of-mass error
of ∼6 mm of both language tasks denoted acceptable localization discrepancies. The quantified
correspondence between the two modalities’ functional results demonstrated that PACT could
provide comparable performance to 7 T fMRI for functional human brain imaging.

Fig. 17. Functional responses. (a) Functional activation in response to different stimulations
measured by PACT (top row) and BOLD fMRI (bottom row). (b) Fractional changes of the
PA and BOLD signals. (b) Fractional changes of the Hb and BOLD signals [27]. Adapted
with permission [27].

The authors quantified the fractional changes of the directly measured PA signals (Fig. 17(b))
and the derived Hb concentration signals (Fig. 17(c)). When quantifying the fractional Hb
concentration changes, the authors compensated for the optical fluence using the prior knowledge
of the wavelength-dependent optical properties of the scalp and brain layers, which had been
measured up to 30 mm in depth using diffuse optical imaging based on layered optical models
[183]. However, the quantification was not validated against the ground truth, which was generally
acquired invasively [184]. Other methods for estimating the optical fluence with a higher accuracy
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include modeling the light propagation as a relationship between the medium’s optical properties
and the light fluence, followed by an iterative calculation of the spatial distribution of the optical
absorption coefficient [185,186]. However, such an approach suffers computational instability,
especially in in vivo situations. Another approach, termed eigenspectra optoacoustic tomography,
models optical fluence as an affine function of a few reference base spectra and has demonstrated
3–8-fold estimation improvement for imaging tissues at depths greater than 5 mm [187]. It
was also shown to be independent of the specific distribution of optical properties. However,
given the case-by-case differences in optical properties of the brain tissue, the preliminary
results of simulated targets in the mouse brain require further validation with a larger pool of
tissue physiology interrogations [188,189]. Overall speaking, the problem of optical fluence
quantification in deep tissues has not been conclusively solved due to the dependency of light
fluence on the medium’s wavelength-dependent and location-dependent scattering and absorption,
as well as the variance of optical properties between subjects [45].

5.3. SNR analysis

The functional data acquired in the hemicraniectomy subjects can be used to estimate the SNR of
transcranial PACT, which has not been demonstrated in vivo. As shown in Fig. 18, the SNR at
∼11 mm below the cortical surface was measured to be ∼50, corresponding to ∼2% detectability
of signal changes [27,28]. Based on the discussion in Section 3, the SNR of transcranial PACT
is compromised by the skull-induced optical attenuation, acoustic attenuation, and acoustic
waveform distortion (Fig. 6). To detect the functional changes of several percent, the hardware
needs to be further improved, and a system with a lower central frequency (e.g., 1 MHz) is
preferred [65]. Given the ∼50% optical attenuation and ∼80% acoustic pressure attenuation for a
4-mm skull thickness, the total PA signal attenuation induced by the skull will be ∼90%. As a
result, the SNR will decrease to ∼5, corresponding to ∼20% detectability for transcranial imaging.
However, the linear dimension of a 1-MHz transducer element will be doubled compared to
the element size in this study, improving the SNR by a factor of ∼2.1. Besides, if the radiant
exposure can be increased to the maximum permissible ANSI safety limit, another factor of ∼4
SNR improvement is expected [87]. Finally, if the element count of the transducer array can be
doubled to 2048, the SNR can be further improved by ∼1.4 times.

Fig. 18. Noise-equivalent molar concentrations (NECs) of Hb vs. depths measured at
1064-nm optical wavelength. Data are presented as mean± SEM (n= 4 subjects). Adapted
with permission [27].

Since the dependence of the SNR on the system parameters, such as the ultrasonic transducer
element size, element count, central frequency, and scanning time, holds the same for different
systems, the above SNR is considered transferable to other PACT systems. Indeed, the thickness
differs among skulls and locations on the skull, but one may estimate the SNR based on the skull
properties summarized in Figs. 5 and 7. Currently, the functional signals are from hemoglobin.
However, one may potentially estimate the SNR of other targets as long as its absorption
coefficient is known. Notably, the SNR cited in this review is mainly for evaluating the feasibility
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of transcranial PACT. With more in vivo studies carried out by various labs, the SNR can be
cross-validated.

Overall, given the above potential hardware improvement, the SNR of a future transcranial
PACT system can potentially reach ∼59 at ∼10 mm below the cortical surface. One should note
that the presented SNR analysis treated acoustic scattering as loss. However, if the next-generation
reconstruction algorithms can incorporate the acoustic scattering effect, the SNR can be further
increased by a factor of ∼1.3 (Fig. 7), resulting in an SNR of ∼77 at ∼10 mm below the cortical
surface. SNRs of ∼59 and ∼77 allow for the detectability of ∼1.7% and ∼1.3% PA signal
changes, respectively. For example, to detect 1% functional changes, the former SNR requires
three times of averaging (SNR increases by

√
3), while the latter SNR needs approximately two

times of averaging (SNR increases by
√

2), allowing for faster detection of function. On the
other hand, since the SNR was predicted based on the assumption of successful correction of the
skull-induced acoustic scattering, the reconstructed structural image is expected to present higher
contrast. However, such a correction algorithm is still under development.

6. Summary and outlook

This article reviewed and discussed the technical state of the art and challenges of translating
PACT to functional human brain imaging. A human brain PACT system was suggested to
employ a 3D hemispherical detection aperture with massively parallel and sensitive ultrasonic
transducers with a ∼1-MHz center frequency. The skull’s acoustic properties and the mechanism
behind skull-induced acoustic aberration were discussed, suggesting that the skull remained the
main obstacle for functional human-brain PACT. Several numerical skull modeling approaches
were envisaged to correct for the skull-induced acoustic aberration, including subject-specific
and subject-non-specific ones. The subject-specific approaches involved x-ray CT, MRI, or
USCT, and the subject-non-specific method was based on the skull atlas. Their feasibility was
discussed, suggesting that the USCT-based modeling method could provide the optimal tradeoff
between modeling accuracy and system complexity. Conventional reconstruction algorithms
and modern full-wave-based acoustic de-aberration algorithms were reviewed, suggesting that
optimization-based de-aberration approaches can potentially provide the best reconstruction
quality but with considerable computational cost. Alternatively, although data-driven techniques
have not been implemented in transcranial PACT reconstruction, they are expected to play a
revolutionary role in this problem due to the high computational speed and potentially high
tolerance to skull modeling errors. To date, functional human-brain PACT has not been realized
in healthy adults, and in the authors’ opinion, the primary goal should be as simple as to
demonstrate the detectability of any functional changes on the superficial cortex. Based on
the preliminary functional results acquired on the hemicraniectomy human patients and ex
vivo skulls, the feasibility of transcranial functional PACT was analyzed, suggesting that with
potential improvement in the hardware and reconstruction methodologies, an SNR of ∼77 at
∼10 mm below the cortical surface is achievable. The corresponding detectability enables 1.3%
functional changes to be revealed. In conclusion, although functional human-brain PACT has
been considered one of the most challenging directions in the photoacoustic field, the authors
believe it is a feasible direction and look forward to seeing breakthroughs in the foreseeable
future.
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